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Individuals with post-stroke aphasia tend to recover their language to some extent; however, it remains challenging to reliably predict 
the nature and extent of recovery that will occur in the long term. The aim of this study was to quantitatively predict language 
outcomes in the first year of recovery from aphasia across multiple domains of language and at multiple timepoints post-stroke. 
We recruited 217 patients with aphasia following acute left hemisphere ischaemic or haemorrhagic stroke and evaluated their speech 
and language function using the Quick Aphasia Battery acutely and then acquired longitudinal follow-up data at up to three time-
points post-stroke: 1 month (n = 102), 3 months (n = 98) and 1 year (n = 74). We used support vector regression to predict language 
outcomes at each timepoint using acute clinical imaging data, demographic variables and initial aphasia severity as input. We found 
that ∼60% of the variance in long-term (1 year) aphasia severity could be predicted using these models, with detailed information 
about lesion location importantly contributing to these predictions. Predictions at the 1- and 3-month timepoints were somewhat 
less accurate based on lesion location alone, but reached comparable accuracy to predictions at the 1-year timepoint when initial apha-
sia severity was included in the models. Specific subdomains of language besides overall severity were predicted with varying but often 
similar degrees of accuracy. Our findings demonstrate the feasibility of using support vector regression models with leave-one-out 
cross-validation to make personalized predictions about long-term recovery from aphasia and provide a valuable neuroanatomical 
baseline upon which to build future models incorporating information beyond neuroanatomical and demographic predictors.

1  Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
2  Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
3  Vanderbilt Stroke and Cerebrovascular Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
4  Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
5  School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD 4072, Australia

Correspondence to: Deborah F. Levy  
Department of Neurosurgery, University of California San Francisco  
1651 4th Street, San Francisco, CA 94117, USA  
E-mail: deborah.levy@ucsf.edu

Keywords: aphasia; stroke

Received April 25, 2023. Revised December 05, 2023. Accepted January 30, 2024. Advance access publication February 1, 2024
© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

BRAIN COMMUNICATIONS
https://doi.org/10.1093/braincomms/fcae024 BRAIN COMMUNICATIONS 2024: Page 1 of 14 | 1

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/1/fcae024/7596343 by U

Q
 Library user on 16 February 2024

https://orcid.org/0000-0002-1389-2525
https://orcid.org/0000-0001-9447-4431
https://orcid.org/0000-0002-7063-8494
https://orcid.org/0000-0002-6178-6356
https://orcid.org/0000-0001-9884-2852
mailto:deborah.levy@ucsf.edu
https://creativecommons.org/licenses/by/4.0/


Graphical Abstract

Introduction
For an aphasia-friendly version of this paper, please see 
Supplementary Fig. 1.

Aphasia, an acquired disorder of language, is a common 
and debilitating consequence of stroke. Most individuals 
with post-stroke aphasia experience some degree of recovery 
of their language function, with the majority of gains occur-
ring within the first year1-4; however, there is marked vari-
ability in the extent to which this recovery occurs.1,4-7

Previous work investigating factors contributing to aphasia 
recovery has demonstrated that lesion location and extent— 
particularly in left hemisphere perisylvian regions—are the 
clearest predictors of long-term language outcomes,4,8-18

with demographic information providing minimal predictive 
utility.19-22 Initial language presentation has also been reported 
as a powerful predictor of long-term outcome,2,3,5,12,23 though 
this measure is primarily a function of lesion location and 
extent.

The aim of the present study is to quantitatively predict 
language outcomes longitudinally in the first year of recovery 
from aphasia, across multiple domains of language and at 
multiple timepoints post-stroke. The ability to make such 
predictions is important for clinical reasons, such as provid-
ing data-driven expectations to patients and their loved ones 
and increasing clinicians’ ability to anticipate treatment 
needs in the context of clinical care. It is also important for 
neuroscientific reasons, as patterns of predictive utility of a 
model across language functions can provide insight into 
the extent to which distinct language subdomains can be 
mapped onto distinct neural substrates. Finally, such a mod-
el could provide a baseline upon which to assess the relative 
influence of other factors such as functional reorganization 
on long-term language outcomes.

The majority of studies that have examined relationships 
between patterns of brain damage and language outcomes 

have been carried out in chronic cohorts.24-29 While these 
prior studies have aided greatly in our understanding of 
lesion–outcome relationships at a broad level, many have 
been limited by coarse metrics of aphasia,14,25,26 relatively 
small cohorts30 or modest predictive utility.24,27-29 Though 
other studies have investigated recovery from aphasia longi-
tudinally, most have not included image-based metrics 
among their predictors.2,3,5,6,8,23 Thus, no existing studies 
have aimed to account for the multidimensional and highly 
variable nature of aphasia recovery in a simultaneously 
longitudinal, lesion-informed, comprehensive and reliable 
manner.

Here, we use support vector regression (SVR) to predict 
scores on a multidimensional language battery at multiple 
timepoints post-stroke using demographic, language, lesion 
extent and lesion location–based predictors as input.

Materials and methods
Participants
A total of 217 individuals with aphasia were included in this 
study. All patients presenting at the Vanderbilt Stroke and 
Cerebrovascular Center at Vanderbilt University Medical 
Center were considered for inclusion. For our broader apha-
sia recovery project of which this study is a part,4 our inclu-
sion criteria were (i) acute ischaemic or haemorrhagic stroke 
predominantly confined to left hemisphere supratentorial 
regions, or right hemisphere stroke with aphasia clearly indi-
cating right hemisphere language dominance; (ii) age 18–90 
years; and (iii) infarct at least 1 cm3 with the following 
exceptions: (i) thalamic infarcts were included regardless of 
extent, and (ii) starting after ∼21 months of data collection, 
basal ganglia and/or subcortical white matter infarcts were 
included only if they exceeded ∼6 cm. Our exclusion criteria 
were (i) unconscious with grave prognosis; (ii) not fluent in 

2 | BRAIN COMMUNICATIONS 2024: Page 2 of 14                                                                                                              D. F. Levy et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/1/fcae024/7596343 by U

Q
 Library user on 16 February 2024

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcae024#supplementary-data


English premorbidly; (iii) prior symptomatic stroke signifi-
cantly impacting language regions or homotopic regions, 
neurodegenerative disease or any other neurological condi-
tion impacting language or cognition; (iv) major psychiatric 
disorder; and (v) substance abuse serious enough to interfere 
with study participation. One thousand and fifty-five pa-
tients met the first inclusion criterion and were evaluated 
for inclusion, and ultimately, 354 met all criteria and con-
sented to participate.4 For the present analysis, we focused 
only on patients who presented with aphasia acutely (n =  
218), but we excluded one patient who had only mild apha-
sia despite an extensive left middle cerebral artery lesion, re-
presenting clear evidence for right hemisphere language 
lateralization, yielding our final sample of 217 individuals.

Speech and language evaluations
Speech and language evaluation was completed at each time-
point using the Quick Aphasia Battery (QAB31; Fig. 1A). The 
QAB is a valid, reliable and time-efficient aphasia assessment 
consisting of eight subtests, from which a QAB overall score 
is derived, as well as seven subscores reflecting speech and lan-
guage domains: single-word comprehension, sentence compre-
hension, word finding, grammatical construction, speech 
motor programming (i.e. absence of apraxia of speech), repeti-
tion and reading. We also examined speech motor execution, 
i.e. absence of dysarthria, which is scored as part of the QAB 
but does not contribute to the overall score. Scores vary on a 
scale from 0 (complete impairment) to 10 (no impairment/ 
normal performance). Patients who were untestable at early 
timepoints but presumed (later confirmed) to be aphasic were 
assigned a QAB overall score of 0 (maximally impaired), while 
their subscores were treated as missing. Subscores were occa-
sionally missing at other timepoints for various idiosyncratic 
reasons, e.g. limited baseline reading ability preventing assess-
ment of reading difficulties due to stroke. These scores were 
treated as missing, and modified procedures were used to 
calculate QAB overall scores where necessary.4 All language 
evaluations were administered by certified speech-language 
pathologists (authors J.L.E., S.M.S. or C.F.O.).

QAB evaluations were sought from all eligible patients 
within the first 5 days after stroke. For those patients who 
presented with aphasia on initial evaluation or were untest-
able acutely and presumed likely to have aphasia, follow-up 
evaluations were sought at 1 month, 3 months and 1 year 
post-stroke. Note that, while the QAB defines the quantita-
tive cut-off for aphasia as a QAB overall score of 8.9, diagno-
ses of aphasia were made using clinical impression as the 
gold standard. Of the 217 individuals with aphasia included 
in the study, 199 were formally tested using the QAB while 
18 were untestable acutely but were found to be aphasic 
on follow-up (mean overall score at 1 month = 4.93 ± 2.33, 
range 0–8.05). The majority of these patients had extensive 
left hemisphere lesions (mean lesion size = 146.75 cm3, 
SD = 107.22 cm3, range = 6.32–376.56 cm3).

Among individuals who were testable acutely, there was 
no difference in initial severity between patients for whom 

follow-up data were obtained (mean overall score = 5.57 ±  
2.69) versus not obtained [mean overall score = 6.04 ±  
2.68, t(197) = 1.25, P = 0.21]. Demographic information 
at each timepoint is available in Table 1. There was no 
difference in the distribution of initial scores among the 
followed-up patients at any timepoint, suggesting no sam-
pling bias towards patients who were initially less impaired 
in the longitudinal data (Supplementary Fig. 2).

Audio and video were recorded for all sessions, which 
were then transcribed, scored and reviewed in consensus 
meetings attended by four to six authors.

Neuroimaging
As part of their clinical care, all patients who come through 
Vanderbilt University Medical Center suspected for stroke 
undergo a brain MRI and/or head CT to identify the pres-
ence, location and extent of neural damage. Lesions were de-
lineated manually on these images by trained personnel 
(authors D.F.L. and M.R.; Fig. 1B). Coregistration and nor-
malization of lesions were carried out as described in Wilson 
et al.4 prior to smoothing with an 8 mm full width at half 
maximum Gaussian kernel. An overlay of the resulting lesion 
masks for the full data set is displayed in Fig. 1C.

The resulting lesion masks were transformed into vector 
space representations, henceforth referred to as lesion load 
vectors (LLVs), via calculation of the overlap of each patient’s 
lesion mask with 150 spatial regions of interest (ROIs) in the 
left hemisphere of a custom combined grey matter and white 
matter atlas (based on Mori et al.33 and Fan et al.34; Fig. 2A). 
This atlas was designed to afford sufficient granularity across 
broad swaths of language cortex that are known to be hetero-
geneous in nature,35 in particular the ability to distinguish be-
tween the superior temporal sulcus and the adjacent superior 
and middle temporal gyri. The resulting atlas consisted of 123 
left hemisphere grey matter ROIs, 21 left hemisphere white 
matter ROIs and the left hemisphere portions of six commis-
sural tracts. Each patient’s LLV consisted of 150 values be-
tween 0 and 1 representing the proportion of each ROI that 
was lesioned (Fig. 2B).

Statistical analysis
Model fitting
SVR with a linear kernel was chosen to model relationships 
between predictors and language scores due to its ability to 
handle high-dimensional input data, lack of sensitivity to out-
liers and resistance to overfitting.36,37 We sought to follow 
best practices in multivariate lesion symptom mapping (e.g. 
full independence of training/testing data and use of appro-
priate metrics of prediction accuracy; see Scheinost et al.38

for details).
Two main sets of models were constructed to predict QAB 

overall and each of the eight domain-specific subscores at 
each timepoint.

The first set of models will be referred to as LLV models. 
These models attempted to predict speech/language measures 
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Figure 1 Overview of methods. (A) Example slides from the QAB32 (used with permission from copyright holder). (B) Examples of manual 
delineation (top) and normalization (bottom) on different imaging types; left shows diffusion weighted imaging as used for ischaemic strokes and 
right shows fluid-attenuated inversion recovery imaging as used for haemorrhagic strokes. (C) Overlay of lesions included in full data set.
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Table 1 Demographic and clinical information reflecting patients included in the models at each timepoint

Acute (N = 217) One month (N = 102) Three months (N = 98) Twelve months (N = 74)

Age 62.5 ± 13.6 (21–90) years 61.9 ±  13.7 (21–90) years 62.2 ±  13.6 (23–84) years 61.9 ±  13.8 (23–90) years
Sex 117 M; 100 F 59 M; 43 F 57 M; 41 F 40 M; 34 F
Handedness 193 R; 19 L; 5 A 90 R; 10 L; 2 A 86 R; 9 L; 3 A 64 R; 7 L; 3 A
Education 12.9 ± 3.2 (0–20) years 13.2 ± 2.7 (3–20) years 13.2 ± 2.8 (3–20) years 13.6 ± 2.9 (3–20) years
Stroke type 174 I; 43 H 82 I; 20 H 78 I; 20 H 57 I; 17 H
Lesion extent 53.6 ± 60.4 (0.6–376.4) cm3 65.9 ± 71.1 (0.73–376.4) cm3 61.7 ± 71.2 (0.73–376.4) cm3 65.3 ± 72.9 (0.73–307.0) cm3

Acute overall severity 5.8 ± 2.7 (0–9.8) 5.5 ± 2.8 (0–9.8) 5.7 ± 2.7 (0–9.8) 5.4 ± 2.6 (0–9.8)

M, male; F, female; R, right; L, left; A, ambidextrous; I, ischaemic; H, haemorrhagic.

A

B

Figure 2 Generation of LLVs. (A) Combined grey and white matter atlas used for LLV generation. Note that only left hemisphere ROIs were 
used. (B) LLVs for the full data set of 217 patients (rows) by 150 ROIs (columns), rows/patients sorted in ascending order of lesion size. SFG, 
superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; OrG, orbital gyrus; PrCG, precentral gyrus; PCL, paracentral lobule; 
STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; FuG, fusiform gyrus; PhG, parahippocampal gyrus; pSTS, 
posterior superior temporal sulcus; SPL, superior parietal lobule; IPL, inferior parietal lobule; Pcun, precuneus; PoCG, postcentral gyrus; Ins, insula; 
Limbic, limbic structures; Occ, occipital; MTL, medial temporal lobe; BG, basal ganglia; Thal, thalamus; WM, white matter.
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based on lesion location, as encoded in the 1 × 150 LLVs. 
Also included in the models were lesion extent, age, sex, 
handedness, years of education and stroke type (ischaemic/ 
haemorrhagic). All of these additional variables were min– 
max scaled.

The second set of models will be referred to as LLV + ini-
tial presentation (LLV + IP) models. These models contained 
the same explanatory variables just described but also in-
cluded patients’ overall scores at the initial timepoint. 
Because initial scores were included as inputs, these models 
were only constructed for the 1-month, 3-month and 
1-year timepoints. This set of models reflects potential clinic-
al applications, in which lesion location and IP are known, 
and the goal is to predict subsequent trajectories.

Two sets of reduced models were also generated for each 
of the LLV and LLV + IP models: the first excluding LLVs 
(so that prediction was based only on lesion extent, demo-
graphic and stroke type variables, plus IP in the case of 
LLV + IP) and the second also excluding lesion extent (so 
that prediction was based solely on demographic and stroke 
type variables, plus IP in the case of LLV + IP).

All models were fit using the ‘fitrsvm’ function in 
Matlab2022b using the default parameters for linear SVR 
(box constraint = 1, epsilon = interquartile range of response 
variable/13.49 and gamma = 1). Following model fitting, pre-
dictions were capped to the range of possible scores (0–10).

Assessment of predictive accuracy
Model generalizability was evaluated using a leave-one-out 
cross-validation procedure, in which each patient was held 
out in turn to have their score predicted from a model based 
on data from the remaining patients.

Model performance was evaluated using prediction r2 as 
defined in Alexander et al.,39 corresponding to the ratio of 
the difference between each observed value and its predicted 
value compared to the difference between each observed va-
lue and the mean (that is, how much better the model per-
forms than simply guessing the mean response value). Note 
that prediction r2 is more conservative than the oft-reported 
squared correlation coefficient; note also that prediction r2 

can be negative in cases where the model performs worse 
than predicting the mean, which may occur in threshold- 
based model-fitting procedures such as epsilon-insensitive 
SVR when predictors are not actually informative.

Prediction r2 is a particularly conservative metric in the 
context of ceiling effects, as it is penalized in a manner that 
increases with decreasing variance in the observed data39; 
therefore, predictive accuracy will be assessed as 
worse when the true scores to be predicted fall within a 
narrow range. We report root mean squared error in 
Supplementary Tables 1 and 2 as a complementary metric 
to reflect raw prediction accuracies unaffected by underlying 
variance.

Topographic mapping using feature weights
In order to investigate the potential neural bases of long-term 
greater aphasia severity, feature weights (i.e. model 

regression coefficients) in which higher values of the predict-
or were associated with lower QAB overall scores were ex-
tracted from the LLV model at the 1-year timepoint with a 
threshold of 1 SD from the mean feature weight. Note that 
there are currently no agreed-upon guidelines for assessing 
the statistical significance of SVR-based beta weights,40

and thus, these features serve only as a preliminary means 
of understanding some of the neural regions that may play 
the biggest role in the prediction of aphasia outcomes.

Results
For a descriptive account of trajectories of recovery across 
the data set at large, see Wilson et al.4 (Note that slight dis-
crepancies in reported numbers are due to exclusion of one 
patient with clear right hemisphere language lateralization 
in the current paper.)

LLV models
These models included information about lesion location 
and extent, as well as age, sex, handedness, education and 
stroke type, but no information about IP.

QAB overall was predicted with r2 = 0.38 at the acute 
timepoint, r2 = 0.41 at the 1-month timepoint, r2 = 0.46 at 
the 3-month timepoint and r2 = 0.59 at the 1-year timepoint 
(Fig. 3). The LLVs were critical to this good performance, 
since the full models outperformed models including lesion 
extent but not location (acute: reduced r2 = 0.27; 1 month: 
reduced r2 = 0.36; 3 months: reduced r2 = 0.30; 1 year: re-
duced r2 = 0.28).

Reduced models including only demographic and stroke 
type information had little to no predictive power, as 
expected.

Predictive power varied for the nine QAB subscores 
(Fig. 3, Supplementary Table 1). Word finding and grammat-
ical construction were predicted particularly well across all 
timepoints, while single-word comprehension, speech motor 
execution and reading proved more difficult to predict.

LLVs improved performance in 34 out of 36 (timepoints 
by subscores) cases, indicating that specific information 
about the lesion site is critical to optimize prediction.

LLV + IP models
These models included information about IP (as measured by 
QAB overall at the acute timepoint) along with lesion loca-
tion and extent, age, sex, handedness, education and stroke 
type.

QAB overall was predicted with r2 = 0.64 at the 1-month 
timepoint, r2 = 0.58 at the 3-month timepoint and r2 = 0.60 
at the 1-year timepoint (Fig. 4). (Note that prediction at the 
acute timepoint was not included because acute scores were 
among the model predictors.)

For QAB overall score, reduced models including only IP, 
demographic and stroke type information were already rela-
tively predictive of outcomes at the 1-month timepoint; 
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however, this predictive utility of the reduced models de-
creased notably at later timepoints. This contrasts with the 
full models, which either retained or increased their predict-
ive utility as time post-stroke increased.

As above, predictive power varied for the nine QAB sub-
scores (Fig. 4, Supplementary Table 2). Word finding, gram-
matical construction, speech motor programming and 
repetition were predicted particularly well across all time-
points, while single-word comprehension, speech motor exe-
cution and reading again proved more difficult to predict.

LLVs improved performance in 19 out of 27 (timepoints 
by subscores) cases, again most notably as time post-stroke 
increased. This pattern was particularly salient for the sen-
tence comprehension, grammatical construction, reading 
and repetition subscores.

Neural predictors of overall aphasia 
severity
In order to investigate which regions may be most associated 
with aphasia severity in the long term, we probed feature 
weights for the QAB overall predictions at the 1-year time-
point using the LLV model. Grey matter predictors of lower 
QAB scores included the left superior temporal gyrus (STG), 
precentral gyrus, orbital gyrus and basal ganglia; white mat-
ter predictors included the left anterior corona radiata, retro-
lenticular internal capsule, genu of the corpus callosum, 
sagittal stratum and superior longitudinal fasciculus (Fig. 5).

Discussion
Our findings indicate that a great deal of the variance in long- 
term recovery from aphasia can be effectively predicted using 
SVR-based lesion–symptom mapping models and show that 
information about the location of a lesion, beyond simply its 
size, is in many cases crucial for making these predictions. 
This finding holds true even in cases where initial severity 
is accounted for, particularly at later timepoints post-stroke. 
Strengths of our study include its large and representative 
sample, its prospective longitudinal design, its detailed char-
acterization of language using a validated aphasia battery 
and its careful consideration of best practices in multivariate 
lesion symptom mapping.38

This work is the first to our knowledge to systematically 
predict language outcomes for multiple predefined 

timepoints and on multiple language domains post-stroke. 
This work provides a quantitative follow-up to a recent de-
scriptive study detailing trajectories of recovery from aphasia 
based on acute neuroimaging.4

Across models and timepoints, QAB overall and word 
finding were the outcomes that could be predicted most reli-
ably, while outcomes in single-word comprehension, speech 
motor execution and reading were more difficult to predict. 
From a clinical perspective, QAB overall and word finding— 
often considered to be the ‘hallmark deficit’ of aphasia32— 
are particularly useful metrics to be able to forecast, due to 
their clear relationship to disability status and long-term in-
dependence for patients.41-43 The apparent lack of predictive 
ability for single-word comprehension and speech motor 
execution may reflect the fact that these deficits tend to re-
solve well in the long term,4 leaving minimal available vari-
ance for the models to learn from or predict. Reading, 
however, demonstrated poor prediction accuracy despite 
showing more variable outcomes in the long term. Future 
work should aim to investigate the ability to prognosticate 
reading outcomes in more detail using evaluations that 
more comprehensively account for various profiles of alexia 
with theoretically distinct anatomical bases.44

Including information about lesion location in the form of 
LLVs led to improvements in prediction accuracy in most 
models (34/36 LLV models, 19/27 LLV + IP models). While 
models that included acute QAB overall score sometimes 
performed well at the 1-month timepoint even without the 
inclusion of detailed lesion information, the addition of le-
sion load information regularly led to increases in predictive 
ability at the 3-month and 1-year timepoints. This pattern 
may reflect the complex nature of the acute post-stroke per-
iod, in which various factors not captured by our models, 
such as hypoperfusion, diaschisis and/or other medical com-
plications, exert more influence, compared to later time-
points by which these issues have largely resolved and 
rendered lesion location a clearer predictor.

Our finding that lesion location–based predictions are 
more accurate at later timepoints is in line with prior work 
demonstrating transience and changeability in aphasia par-
ticularly in the early post-stroke period4,45,46; however, it 
stands in opposition to a theorized ‘proportional recovery 
rule’ stating that individuals with stroke tend to recover 
some fixed proportion of their lost function.23,47 It is import-
ant to note, however, that the original claims in these propor-
tional recovery studies were limited by small sample sizes, 

Figure 3 Continued 
show the acute (1–5 days post) timepoint, 1-month timepoint, 3-month timepoint and 12-month timepoint. Sample size and prediction r2 are 
displayed for each model. Grey identity lines are plotted for reference to show how perfect prediction accuracy would appear. (Right) Bar plots 
showing prediction r2 across all timepoints for QAB overall and the eight subscores (rows). Unfilled bars correspond to models using demographic- 
only predictors, shaded/striped bars correspond to models using demographic and lesion size predictors and solid bars correspond to models using 
demographic, lesion size and lesion load/location predictors. Sample sizes for each group of bars within a plot are equal and match those listed on the 
scatter plot for the corresponding subscore and timepoint. QAB overall, Quick Aphasia Battery overall score; Word comp, single-word 
comprehension; Sentence comp, sentence comprehension; Gram constr, grammatical construction; Speech mot prog, speech motor programming; 
Speech mot exec, speech motor execution.
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Figure 4 Model performance for the lesion load + initial severity models. As in Fig. 3 except that model performance reflects the 
inclusion of initial QAB overall score as an additional predictor. Note that acute predictions are not shown due to the presence of an acute score 
among the model predictors.
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and these findings have similarly been disputed from a statis-
tical perspective, as the correlations that appear to support 
proportional recovery have been shown to occur even in si-
mulated data with no true association between baseline 
and outcome scores.27,48-50 Thus, while initial language 
presentation may be a good predictor of outcomes in the 
short term, information about the integrity of specific ana-
tomical regions may be more useful for effectively predicting 
outcomes in the chronic stage.

Regions in which damage was the most associated with 
greater aphasia severity in the long term fell in both grey 
and white matter: specifically, the left posterior STG, precen-
tral gyrus, orbital gyrus, middle frontal gyrus and basal 

ganglia in grey matter and the anterior corona radiata, retro-
lenticular internal capsule, genu of the corpus callosum, sagit-
tal stratum and superior longitudinal fasciculus in white 
matter. The left posterior STG has long been known to play 
a crucial role in language, though the particulars of its role 
and the anatomical bounds of the relevant region have been 
a subject of much debate9-12,35,51-54; the precentral gyrus is 
also a known language region associated with both phono-
logical processing and speech motor programming.55-57

These regions are thus reasonably expected correlates of 
long-term impairment in language. However, the absence 
of ‘Broca’s area’ as a predictor of long-term impairment is 
noteworthy and is in line with prior work demonstrating 

Figure 5 Neural predictors of long-term aphasia severity. Regions corresponding to negative feature weights 1 SD more extreme than 
the mean in the lesion load model, in which damage was predictive of lower overall QAB scores at the 1-year timepoint. Brighter regions 
correspond to beta weights associated with larger reductions in QAB overall at the 1-year timepoint.
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that most aphasias following lesions to this region are transi-
ent in nature.58-61 Regarding white matter predictors, the ex-
tent to which grey versus white matter measures are valuable 
for prediction is disputed, with some researchers suggesting 
metrics of structural connectivity increase predictive accur-
acy24,29 and others claiming white matter information is 
largely redundant with grey matter measures.27,28 Prior 
work has, however, noted the importance of white matter 
‘bottlenecks’ in left frontal and temporoparietal regions for 
supporting language function,62-64 which aligns with our 
finding that the top two strongest predictors of overall out-
comes were in anterior regions of the corona radiata and pos-
terior regions of the internal capsule, close to these proposed 
bottlenecks.

While this study is the first to our knowledge to specifically 
predict longitudinal language outcomes across multiple do-
mains of language post-stroke, a handful of previous studies 
have used similar approaches to explore the extent to which 
post-stroke language abilities can be predicted using machine 
learning analyses of neuroimaging data. Most of these stud-
ies have been cross-sectional in nature, that is, investigating 
language performance in chronic cohorts at a single time-
point without reference to their acute presentation. Among 
these cross-sectional studies, some chose aphasia subtypes 
or global measures of aphasia severity as their outcomes of 
interest25,26; others predicted more specific measures but 
achieved only modest predictive accuracy in out-of-sample 
testing, e.g. r2 = 0.44–0.49,24,29,30 even as calculated using 
the squared correlation coefficient (a more liberal metric of 
predictive accuracy than prediction r2 reported here39). To 
our knowledge, the previous study most similar to the pre-
sent study is Hope et al.,14 one of the only studies using 
multivariate lesion symptom mapping to make an explicit at-
tempt to account for recovery. This study used Gaussian pro-
cess regression based on structural imaging data and clinical 
variables to predict a measure of speech production derived 
from the Comprehensive Aphasia Test3 at both single and 
multiple timepoints. However, while this study had a large 
initial sample size of 270 total patients, only 38 individuals 
were assessed longitudinally, and these individuals varied 
widely in the times of assessment post-stroke. Additionally, 
the study focused only on speech production.

The ability to accurately predict aphasia outcomes as de-
monstrated herein could have a positive impact on clinical 
practice and individuals living with aphasia. First, a better 
baseline understanding of expected trajectories of recovery 
from aphasia lays the groundwork for assessing the efficacy 
of treatment in clinical practice and/or clinical trials. Second, 
the ability to provide a patient with a sense of what recovery 
is likely to look like ‘for them’, specifically, could help to set 
realistic expectations for the patient, their loved ones and 
their clinical team, such that appropriate strategies for man-
aging impairment and collaborative goal setting could be put 
into place.65 Finally, while speech-language pathologists 
tend to recognize the importance of neuroanatomical aware-
ness in clinical practice,66,67 neuroanatomical information is 
often found intimidating68 and can be poorly retained.69

Thus, developing algorithms which can help to ‘interpret’ 
neuroimaging data, using technology similar to the models 
described here, may help clinicians across the spectrum of 
care more easily make neuroanatomically informed predic-
tions for patients.

Regarding the real-world applicability of using neuroima-
ging to predict language recovery, Shuster70 has raised con-
cerns about prior attempts at this aim, citing, for example, 
a lack of regard for individual differences, poor validation 
on independent data sets, inaccessibility of scanner environ-
ments for certain patients and inattention to predictors that 
do not relate directly to the academic hypotheses in question. 
We have addressed many of these concerns in the present 
study: individual differences are accounted for via the posi-
tioning of patients in a multidimensional symptom space; 
leave-one-out cross-validation helps to handle the risk of 
overfitting; patients who were not MRI safe are included 
via drawing lesions on CTs; demographic and non–lesion- 
based predictors are already included, with even more pre-
dictors planned for inclusion in the future. Nevertheless, 
this work should simply be considered an early step towards 
a better understanding of the myriad factors that can influ-
ence language recovery, considered in tandem with other in-
dividual patient characteristics, therapeutic interventions 
and changes in neural function due to neuroplasticity. 
Indeed, machine learning approaches are simply models 
and should always be considered as a supplement to, rather 
than a replacement for, clinical expertise.

Limitations
This study has several notable limitations. First, many of the 
limitations noted in Wilson et al.4 remain relevant to this 
follow-up study. As noted therein, the QAB is designed to 
be brief and therefore cannot comprehensively account for 
all aspects of language and associated functions; lesions 
were delineated using only acute neuroimaging, which may 
not be entirely reflective of irreversible neural damage; and 
sample sizes decreased longitudinally, with smaller sample 
sizes at later timepoints. Though there were no differences 
in severity across patients with and without follow-up time-
points, future studies with larger sample sizes at later time-
points will be necessary to verify the findings reported here.

Second, we chose to use within-sample leave-one-out 
cross-validation to assess the predictive accuracy of our mod-
els. Although the training and validation data used in our 
cross-validation procedure were fully independent, we were 
not able to hold out a truly independent test set to evaluate fi-
nal model performance without sacrificing the power of our 
sample size. As data from future patients is collected, this 
new data will become the test set upon which the true gener-
alizability of our models can be assessed. Prior work has dis-
cussed potential pitfalls of leave-one-out cross-validation, in 
particular the potential for anti-correlation between training 
and testing data in the presence of high variance across test 
exemplars.71 However, it is important to note that there are 
trade-offs incurred by all methods of cross-validation.38,72
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Given our relatively small sample sizes at later timepoints and 
the relatively consistent lesion–symptom relationships ob-
served, the bias–variance trade-offs incurred by using 
leave-one-out cross-validation were deemed preferable to 
those associated with holding out larger testing sets, especial-
ly decreased power to detect relationships between predictors 
and language symptoms. This issue could, again, be ad-
dressed in future studies with larger samples.

Finally, the reporting of neural correlates of language out-
comes using beta weights to ascribe importance to particular 
spatial predictors of aphasia severity is experimental. The inter-
pretation of feature weights in machine learning models, even 
in linear models as used here, is not straightforward due to 
the fact that they are calculated to meet algorithm-specific regu-
larization constraints, rather than to model a direct relationship 
with the behavioural variable in question.40,73,74 Thus, these re-
sults should be interpreted with caution.

Conclusion
This study is the first to systematically predict language out-
comes for multiple predefined timepoints and on multiple 
speech and language domains post-stroke, explaining about 
three-fifths of the variance in aphasia outcome at 1 year. Our 
findings demonstrate that information about lesion location 
is crucial for making many of these predictions, particularly 
at later timepoints post-stroke. This work both demonstrates 
the feasibility of using SVR models to make precise and per-
sonalized predictions about long-term recovery from aphasia 
and provides a valuable structural baseline upon which to 
build more elaborate models, including information about 
functional language organization, brain health, diffusion 
tractography and/or speech and language therapy. Such 
models could help to further clarify what is different when, 
structural damage being equal, recovery is more successful 
in some individuals than others. Taken together, these scien-
tific endeavours will aid both clinicians and scientists by pro-
viding a more effective means to predict outcomes in aphasia 
and by further elucidating the neural bases of language.
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Supplementary material is available at Brain Communications 
online.
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