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Degeneration of language regions in the dominant hemisphere can result in primary progressive aphasia
(PPA), a clinical syndrome characterized by progressive deficits in speech and/or language function. Recent
studies have identified three variants of PPA: progressive non-fluent aphasia (PNFA), semantic dementia
(SD) and logopenic progressive aphasia (LPA). Each variant is associated with characteristic linguistic
features, distinct patterns of brain atrophy, and different likelihoods of particular underlying pathogenic
processes, which makes correct differential diagnosis highly clinically relevant. Evaluation of linguistic
behavior can be challenging for non-specialists, and neuroimaging findings in single subjects are often
difficult to evaluate by eye. We investigated the utility of automated structural MR image analysis to
discriminate PPA variants (N=86) from each other and from normal controls (N=115). T1 images were
preprocessed to obtain modulated grey matter (GM) images. Feature selection was performed with principal
components analysis (PCA) on GM images as well as images of lateralized atrophy. PC coefficients were
classified with linear support vector machines, and a cross-validation scheme was used to obtain accuracy
rates for generalization to novel cases. The overall mean accuracy in discriminating between pairs of groups
was 92.2%. For one pair of groups, PNFA and SD, we also investigated the utility of including several linguistic
variables as features. Models with both imaging and linguistic features performed better than models with
only imaging or only linguistic features. These results suggest that automated methods could assist in the
differential diagnosis of PPA variants, enabling therapies to be targeted to likely underlying etiologies.
© 2009 Elsevier Inc. All rights reserved.
Introduction

Primary progressive aphasia (PPA) is a clinical syndrome in which
degeneration of language regions in the dominant hemisphere is
associated with progressive deficits in speech and/or language
function (Mesulam, 1982, 2001). PPA cases can be classified into
variants based on linguistic features (Hodges and Patterson, 1996;
Neary et al., 1998; Gorno-Tempini et al., 2004), and each variant is
associated with distinct patterns of atrophy (Gorno-Tempini et al.,
2004) and different likelihoods of underlying pathologies such as
taopathies, ubiquitin- and TDP-43-related changes, or Alzheimer's
disease (Davies et al., 2005; Josephs et al., 2008;Mesulam et al., 2008).

The two most-studied variants are progressive non-fluent aphasia
(PNFA) and semantic dementia (SD). PNFA is characterized by apraxia
of speech and agrammatism in both production and comprehension,
but preserved single-word comprehension (Grossman et al., 1996;
Hodges and Patterson, 1996; Neary et al., 1998). PNFA is associated
with atrophy and hypometabolism in left inferior frontal regions
(Nestor et al., 2003; Gorno-Tempini et al., 2004). In contrast, SD
patients demonstrate profound anomia and poor single-word com-
lson).

l rights reserved.
prehension, as well as a wider loss of semantic knowledge, but retain
fluent, grammatical speech (Snowden et al., 1989; Hodges et al., 1992).
SD is associated with atrophy of anterior and inferior temporal regions
bilaterally, usually more extensive in the left hemisphere (Mummery
et al., 2000; Rosen et al., 2002; Gorno-Tempini et al., 2004). A third
PPA variant is logopenic progressive aphasia (LPA), characterized by
slow but grammatical speech with word-finding difficulties, phono-
logical paraphasias, and deficits in sentence repetition (Weintraub
et al., 1990; Kertesz et al., 2003; Gorno-Tempini et al., 2004, 2008).
Atrophy in LPA is predominantly left temporo-parietal (Gorno-
Tempini et al., 2004, 2008).

Because different PPAvariants typically reflect different underlying
etiologies, distinguishing between them is important from a clinical
point of view, and will become even more so with the emergence of
therapies targeted to particular disease mechanisms. Although the
atrophy patterns associated with each variant have been documented
(Mummery et al., 2000; Rosen et al., 2002; Gorno-Tempini et al., 2004,
2008), the fact that statistical differences exist at the population level
does not imply that structural imaging can be easily used to diagnose
individual cases. Examples of single cases with relatively mild atrophy
characteristic of each variant are shown in Fig. 1. The subtlety of
changes observable on structural MRI is reflected in the fact that
neuroimaging remains only a supportive feature for clinical diagnosis
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Fig. 1. T1-weighted MRI scans of patients with relatively mild atrophy representative of each PPA variant, and a normal control subject. (a) A typical PNFA patient, aged 74 years. The
arrowheads show asymmetric left-lateralized atrophy in the insula and inferior frontal junction. (b) A typical SD patient, aged 57 years. The arrowhead shows left-lateralized atrophy
in the anterior temporal lobe, however atrophy is not always left-lateralized in SD. (c) A typical LPA patient, aged 63 years. The arrowhead shows left-lateralized atrophy in the
ascending part of the Sylvian fissure. (d) A typical normal control, aged 67 years.
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of PPA variants (Neary et al., 1998). Furthermore, because PPA is not
common, only neurologists and radiologists in large specialized
dementia centers are likely to have sufficient experience to recognize
and discriminate PPA and its variants. An automated image analysis
procedure could prove clinically relevant because it would allow the
objective assessment of even mild atrophy.

In this study, we developed an automated procedure for
distinguishing PPA variants from each other and from normal controls
based on structural MR images. In brief, our algorithm entails
preprocessing (bias correction, segmentation and normalization) to
derive greymatter (GM) probability maps in standard space; principal
components analysis (PCA) to extract features from these maps; and
classification of feature vectors with linear support vector machines
(SVMs). For the discrimination between PNFA and SD, we also
examined the utility of including linguistic variables as additional
features alongside the imaging data. A number of recent studies have
used similar pattern classification methods to classify patients with
Alzheimer's disease, behavioral variant fronto-temporal dementia
(bvFTD), and mild cognitive impairment (MCI) (Teipel et al., 2007;
Davatzikos et al., 2008a, 2008b; Fan et al., 2008; Klöppel et al., 2008b;
Lerch et al., 2008; Misra et al., 2009; Vemuri et al., 2008). Automated
classification algorithms have been shown to perform as well or better
than radiologists (Klöppel et al., 2008a). To our knowledge, the
current study is the first to use pattern classification methods on MR
images to discriminate variants of PPA.

Materials and methods

Subjects

Patients and normal control (NC) subjects were recruited through
the Memory and Aging Center at the University of California, San
Francisco (UCSF). All subjects, including normal controls, received a
comprehensive evaluation including neurological history and exam-
ination, neuropsychological testing of memory, executive function,
visuospatial skills, language andmood, interviewwith an informant or
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caregiver regarding activities of daily living, and neuroimaging. This
evaluationwas performed by a multidisciplinary team of neurologists,
neuropsychologists, psychiatrists and nurses.

A diagnosis of PPA required progressive deterioration of speech
and/or language functions, and that deficits be largely restricted to
speech and/or language for at least two years. Patients were then
diagnosed with PNFA or SD according to established criteria (Neary
et al., 1998). Patients were diagnosed with LPAwhen they met criteria
for PPA, but did not meet criteria for either PNFA (due to well-
articulated and grammatical speech) or SD (due to preserved single-
word comprehension). LPA patients have word-finding difficulties in
the context of fluent and grammatical speech and show a typical
pattern of sentence repetition and comprehension problems due to a
phonological short-termmemory deficit (Gorno-Tempini et al., 2008).
Neuroimaging results were not used for diagnostic purposes, but only
to rule out other causes of focal brain damage, including extensive
white matter disease. Between May 2001 and November 2008, 96
patients were diagnosed with PPA. Of these, 10 were excluded from
the present study for unclear subdiagnosis (N=4), MMSE≤8 (N=4)
or no MRI scan (N=2). The remaining 86 patients were classified as
PNFA (N=32), SD (N=38), or LPA (N=16).

In the same period, normal controls were recruited through
advertisements in local newspapers and talks at local senior
community centers. 115 subjects aged 50 to 80 were judged to be
clinically normal based on the comprehensive evaluation described
above, and had no abnormalities on neuroimaging. Although
extensive white matter disease was an exclusionary criterion,
presence of atrophy, which varies on a continuum in a population of
this age, was not.
Table 1
Demographic information and linguistic and neuropsychological measures.

PNFA

Age 68.1 (6.8)
Males/females 8/24
Years of education 15.0 (2.7)
Mini Mental State Examination (30) 24.9 (5.0)
Clinical Dementia Rating 0.5 (0.4)
Years from first symptom 3.8 (1.4)

Language production
Boston naming test (15) 12.1 (2.7)
Phonemic fluency 4.5 (2.9)
Semantic fluency 9.8 (4.7)
Spontaneous speech fluency (WAB) (10) 6.2 (3.2)
Apraxia of speech (7) 3.1 (2.4)
Dysarthria (7) 2.4 (3.0)
Repetition (WAB) (100) 77.6 (25.5)
Repetition (3 items) (3) 1.9 (1.1)

Language comprehension
Auditory word comprehension (WAB) (60) 58.8 (2.6)
Sequential commands (WAB) (80) 69.5 (11.7)
Pyramids and palm trees (52) 47.5 (4.6)

Visuospatial function
Modified Rey copy (17) 14.6 (1.7)
Delayed Rey recall (17) 9.4(4.3)
Visual Object and Space Perception 8.6 (1.3)

Verbal memory
CVLT first four (36) 22.4 (6.9)
CVLT 30q (9) 6.1 (2.2)
CVLT 10' free recall (9) 6.0 (2.5)
CVLT 10' recognition (9) 8.3 (0.9)

Executive function
Digits backwards 2.9 (1.2)
Modified trails (lines per minute) 9.8 (10.3)

Values shown are mean (standard deviation). WAB: Western Aphasia Battery; CVLT: Califor
Demographic, linguistic and neuropsychological measures for each
group are shown in Table 1.

Each of the six possible pairwise comparisons between groups was
considered as a separate problem, i.e. (i) PNFA vs NC; (ii) SD vs NC;
(iii) LPA vs NC; (iv) PNFA vs SD; (v) PNFA vs LPA; (vi) SD vs LPA. In
order to match group sizes for each pairing, we included all subjects
from whichever was the smaller of the two groups, then used an
algorithm to select subjects from the larger group so as to match the
smaller group as closely as possible in terms of age, scanner, and
where possible, gender. After subset selection, no pair of groups
differed significantly in age, duration of disease (where applicable) or
MMSE (where applicable) (all psN0.05), except that the PNFA group
was older than the SD group (68.1 vs 64.4 years, p=0.034). Note
however that age was covaried out prior to model construction (see
below), so age-related differences could not be used by models to aid
discrimination.

All participants gave written informed consent according to the
Declaration of Helsinki, and the studywas approved by the Committee
on Human Research at UCSF.

Image acquisition

Structural images were acquired on two different scanners. For
171 subjects, T1 images were acquired on a 1.5 T Siemens
Magnetom VISION system (Siemens, Iselin, NJ) equipped with a
standard quadrature head coil, using a magnetization prepared rapid
gradient echo (MPRAGE) sequence (164 coronal slices; slice
thickness=1.5 mm; FOV=256 mm; matrix 256×256; voxel size
1.0×1.5×1.0 mm; TR=10 ms; TE=4 ms; flip angle=15°).
SD LPA NC

63.2 (6.9) 63.9 (7.7) 66.0 (7.6)
21/17 8/8 47/68
15.6 (2.8) 17.0 (3.2) 17.1 (2.6)
22.7 (6.1) 20.5 (6.0) 29.6 (0.6)
0.7 (0.4) 0.6 (0.2)
4.8 (2.8) 3.4 (1.5)

4.1 (3.1) 10.2 (3.8) 14.4 (1.0)
7.2 (3.9) 8.4 (4.1) 15.7 (4.7)
7.1 (5.0) 8.6 (4.7) 22.2 (5.6)
9.0 (0.8) 8.4 (1.6)
0.0 (0.0) 0.6 (1.3)
0.0 (0.0) 0.0 (0.0)

87.9 (13.6) 77.6 (7.7)
2.3 (0.8) 1.5 (0.8)

50.6 (11.3) 58.3 (2.5)
72.8 (10.5) 65.5 (15.6)
38.5 (7.5) 47.1 (5.0) 51.4 (0.8)

15.4 (1.4) 14.2 (2.7) 15.7 (1.3)
7.3 (4.1) 6.0 (3.4) 11.7 (3.1)
9.3 (1.0) 8.3 (1.3) 9.2 (1.1)

14.3 (7.0) 13.1 (6.3) 29.3 (3.8)
2.6 (2.3) 2.9 (2.1) 7.9 (1.4)
2.0 (2.4) 2.2 (2.3) 7.4 (1.8)
6.0 (2.5) 7.6 (1.5) 8.5 (0.8)

4.5 (1.2) 3.1 (0.9) 5.2 (1.2)
21.3 (15.0) 8.2 (9.6) 32.8 (13.1)

nia Verbal Learning Test.
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For the remaining 30 subjects, imageswere acquiredon a 4 TBruker
MedSpec systemwith an 8 channel head coil controlled by a Siemens
Trio console, using an MPRAGE sequence (176 sagittal slices; slice
thickness=1 mm; FOV=256×256 mm; matrix=256×256; voxel
size=1.0×1.0×1.0 mm; TR=2300 ms; TE=3 ms; flip angle=7°).

The numbers of subjects scanned on the 1.5 T and 4 T scanners
were: PNFA: 26/6; SD: 34/4; LPA: 14/2; NC: 97/18. The proportions of
subjects studied using each scanner did not differ across groups (χ2

(3)=1.070, p=0.78), and scanner type was also covaried out prior to
model construction (see below). An additional analysis restricted to
only those subjects scanned on the 1.5 T scanner resulted in
classification performance that was comparable to the main analysis.

Image preprocessing

Images were corrected for bias field, segmented into grey matter
(GM), white matter and CSF, and normalized to MNI space with the
Unified Segmentation procedure (Ashburner and Friston, 2005),
implemented in SPM5 running under MATLAB 7.4 (Mathworks,
Natick, MA). Modulated GM probability maps scaled by Jacobians
were then smoothed with a Gaussian kernel of 8 mm FWHM.

For each of the six pairs of groups, a GM mask was created to
include only voxels wheremean GMprobability was greater than 0.25.
A general linear model was fit at each voxel to remove covariates of
age, sex, scanner (1.5 T or 4 T), and total intracranial volume. The
residuals from this regression were used for subsequent analysis.

We experimented with different degrees of smoothing (0 mm,
4 mm, and 12 mm), as well another segmentation method:
Diffeomorphic Anatomical Registration using Exponentiated Lie
algebra (DARTEL) (Ashburner, 2007). Model classification perfor-
mance did not significantly differ as a function of these preprocessing
options.

Feature selection

The goal of feature selection is to reduce each patient's image to a
feature vector which effectively summarizes the image. We used
principal components analysis (PCA), which expresses each patient's
image as the weighted sum of a number of principal component (PC)
images, such that the variance explained by each successive PC is
maximized (Jackson, 1991). The component images encode patterns
of GM volume differences, and the feature vector which characterizes
each patient's image is made up of the weighting coefficients for the
PCs.

For each pair of groups, patients from both groups were pooled,
and PCAwas carried out via singular value decomposition in MATLAB,
based on the covariance matrix. (Similar results were obtained with
PCA based on the correlation matrix.) PCA was carried out only on
images in each training set (see cross-validation methods below), and
images from testing sets were then projected onto the principal
components obtained, except for Fig. 3 which is based on all patients
in each pair of groups.

Since all PPA variants are characterized by asymmetric atrophy
(Mummery et al., 2000; Rosen et al., 2002; Nestor et al., 2003; Gorno-
Tempini et al., 2004, 2008), wewanted to derive features whichwould
directly encode lateralization of atrophy and regional differences in
this lateralization. A “lateralization image” was calculated for each
subject by subtracting the modulated GMmap for the left hemisphere
from the right hemisphere. PCAwas performed on these lateralization
images. We refer to the principal components from this analysis as
lateralization principal components (LPCs).

Each subject's image was encoded by a feature vector containing
coefficients for PCs from the GM images, and LPCs from the
lateralization images. Scores for each feature were demeaned and
normalized. The numbers of PCs and LPCs included were system-
atically varied as described below.
We also compared PCA-based feature selection to a simpler
method where images were reduced to 116 features representing
mean modulated GM volumes in 116 anatomical regions of interest
(ROIs) based on the Automated Anatomical Labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002).

Linguistic variables

For the discrimination between PNFA and SD, we investigated
whether performance could be improved by including linguistic
variables as features alongside imaging features derived with PCA.
Only these two groups were employed here, because most controls
were at ceiling on the relevant measures, and several LPA subjects
weremissing data, making the number of subjects in the potential LPA
group too small. Three variables were used: (i) Number of items
correct on a 15-item version of the Boston Naming Test (BNT) (Kaplan
et al., 1978). Short forms of the BNT have proved to be reliable in
numerous studies (Kent and Luszcz, 2002). (ii) Auditory word
recognition, from the 60-item test in the Western Aphasia Battery
(Kertesz, 1982). Patients must indicate which of an array of six items
matches a word spoken by the examiner. (iii) Repetition of the three
phrases “down to earth”, “pry the tin lid off” and “no ifs, ands or buts”.
Responses were scored as correct when all words were intelligible and
in the correct order, and there were no extraneous words.

These variables were available for 26 of the 32 patients with PNFA,
and 32 of the 38 patients with SD. Therefore, models were constructed
to discriminate between these 26 PNFA patients, and 26 of the 32 SD
patients, selected so as to match the PNFA group in age as far as
possible. Linguistic variables were demeaned and normalized. Models
were constructed with imaging features only, linguistic features only,
or both imaging and linguistic features.

Machine learning and cross-validation

To classify patients, we used linear support vector machines
(SVMs) (Vapnik, 1995, 1998) implemented with libsvm version 2.86
(Chang and Lin, 2001), running under MATLAB. Patients were
represented as points in n-dimensional feature space, where n is the
length of the feature vectors. SVMs identify an optimal separating
hyperplane in this space such that patients from each group lie on
opposite sides of the hyperplane, as far as this is possible. Once the
hyperplane has been defined, novel cases can be classified as
belonging to one group or the other depending on which side of the
hyperplane their feature vectors fall on. It is also possible to obtain the
probability that a new case belongs to one group or the other, which
depends on how far from the hyperplane it falls. Probabilities were
derived based on the method described by Platt (2000), and were
used to construct Receiver Operating Characteristic (ROC) curves. We
used a cross-validation procedure to determine classification accuracy,
using expert clinical diagnosis as the gold standard.

Linear SVMs were chosen because they require the optimization of
only a single parameter C, which adjusts the penalty assigned to
misclassification errors during model construction. The optimal
number of PCs (nPCs) and the optimal number of LPCs (nLPCs) were
also unknown, so we treated these as parameters also. We designed a
two-level cross-validation procedure implemented in MATLAB to
optimize these three parameters and assess generalizability (Fig. 2). In
brief, the purpose of the first level of cross-validation was to ensure
that each patient was classified based on models which had been
constructed without reference to that patient, i.e. to properly
determine generalizability. The purpose of the second level was to
optimize the three unknown parameters.

Specifically, for each pair of groups, the set of patients (half
belonging to one group and half to the other) was first divided into 8
partitions, each containing equal numbers from each group except
where odd-sized partitions were required in which case the numbers



Fig. 2. Two-level cross-validation procedure. For each pair of groups (e.g. PNFA vs NC),
the patients were first divided into 8 partitions. In this example, there were 64 patients
(32 PNFA and 32 NC), so each partition contained 8 patients (4 PNFA and 4 NC). One
partition was held out to serve as the testing set. The other 7 partitions (56 patients)
comprised the training set. In a parameter optimization stage, the training set was then
re-divided into 8 sub-partitions of 7 patients each. Each sub-partition was left out in
turn, and all possible sets of parameter values were used to train models based on the
other 7 sub-partitions (49 patients) to predict the left-out sub-partition (7 patients).
Whichever set of parameters proved best overall was then used to train a model on the
whole training set (56 patients) to predict the testing set (8 patients). This whole
process was repeated 8 times leaving out a different partition (8 patients) each time.
Parameters were optimized again on each training set (not shown). This two-level
procedure allowed as many subjects as possible to be used in model construction, while
ensuring that every patient was classified based onmodels and parameters which were
determined without reference to the “novel” patients being classified. See text for
details.
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differed by 1. Each of these partitions would in turn constitute the
testing set, with the other 7 partitions constituting the training set.
Ideally the number of partitions should be as high as possible so as to
use as many subjects as possible for model construction; the only
limiting factor is computational efficiency. The images and diagnoses
for each testing set were set aside in turn, and the following procedure
was performed on the training set.

First, the training set was re-divided into 8 partitions at random,
again keeping partitions balanced according to group membership as
far as possible. Then, the parameters C, nPCs and nLPCs were
systematically varied over the ranges C ∈ [2−5, 2−4, 2−3, …, 28],
nPCs ∈ [1, 2, ..., 10] and nLPCs ∈ [0, 1, 2]. These ranges for nPCs and
nLPCs were determined with reference to scree plots: eigenvalues
decreased in an approximately straight line after about the 10th PC or
the 2nd LPC, suggesting that further components do not reflect
meaningful variability (Jackson, 1991). For each set of parameters, a
model was constructed based on 7 of the 8 partitions, and used to
predict the diagnoses of the 8th partition. This was repeated leaving
out a different partition each time, and total accuracy over the training
set as a function of C, nPCs and nLPCs was recorded. This procedure
was repeated 12 times (with variability arising due to repartitioning at
random), and accuracies were averaged across the iterations, in order
to obtain better estimates of which parameters were likely to provide
good generalizability.

Now for each value of nPCs and nLPCs, a model was constructed
based on the whole training set, using the optimal value of C for each
given value of nPCs and nLPCs. This model was applied to the testing
set, and we recorded the predicted group memberships and
probabilities for each subject. Finally, the predictions arising from
the optimal values of nPCs and nLPCs (as determined only on the
training set) were recorded.

This whole procedure was repeated 20 times for each pair of
groups. Variability across iterations arises because each subject is
predicted based on a different training set each time. The final
decision value for each subject was determined by averaging across
the probabilities obtained for each of the 20 repetitions of the
procedure.

The accuracy of each classifier was compared to chance perfor-
mance by the binomial test. Binomial confidence intervals were
calculated asWilson intervals. ROC curves were calculated and plotted
with a custom MATLAB program. The performance of different
classifiers was compared with a non-parametric test based on the
differences between the areas under the curves (AUC) (Vergara et al.,
2008).

Results

For each pair of groups, PCAwas carried out on GM images and also
on “lateralization” images reflecting regional asymmetries in GM
volume (Fig. 3). The first PC typically reflected GM volume fairly
uniformly across the brain and so captured global atrophy. In each case
where a patient group was compared with controls, patients showed
reduced coefficients for the first PC, reflecting global atrophy
(Fig. 3a–c, first rows, boxplots). The second PC usually captured
large-scale differences between the two groups, i.e. regionally specific
atrophy. For PNFA vs NC, this component peaked in the insula,
especially in the left hemisphere (Fig. 3a, middle row). For SD vs NC,
the second component peaked in the anterior temporal lobes,
especially in the left hemisphere (Fig. 3b, middle row). For LPA versus
NC, the second PC reflected GM volume in posterior temporal and
parietal regions, again left-lateralized (Fig. 3c, middle row). For PNFA
vs SD, the second component contained opposite signed values in the
anterior temporal lobes and frontal lobe (Fig. 3d, middle row). For
PNFAvs LPA, the second PC contained opposite signed values in frontal
versus parietal regions (Fig. 3e, middle row). For SD vs LPA, it
contained opposite signed values in anterior temporal versus parietal
regions (Fig. 3f, middle row). In each case, the second PC captured
gross differences between the two groups comprising the sample, as
reflected in the boxplots. Further PCs also contained important
information, as revealed by the fact that their inclusion increased
classification accuracies (see below), however rarely did they have
such straightforward interpretations as the first and second
components.

The first lateralization PCs (LPCs) also tended to capture global
differences in asymmetries of GM volumes. Except for about a quarter
of SD cases (Seeley et al., 2005), all PPA variants involve left-
lateralized atrophy; this is reflected by lower coefficients in patient
groups than controls for the first LPC (Fig. 3a–c, third rows, boxplots).
Note the wide range of SD coefficients (Fig. 3b, third row, boxplot);
this reflects the fact that some SD patients have right-lateralized
atrophy.



Fig. 3. Principal components analysis. PCA was carried out separately for each pair of groups: (a) PNFA vs NC; (b) SD vs NC; (c) LPA vs NC; (d) PNFA vs SD; (e) PNFA vs LPA; (f) SD vs
LPA. The first and second principal components (PCs) are shown for all pairs. The first PC typically captured global degree of atrophy, whereas the second PC typically captured
regionally specific patterns of atrophy reflecting differences between the two groups. A “lateralization” PC (LPC) is also shown, which quantifies asymmetrical GM volume
differences. For comparisons of patient groups to controls, the first LPC, which essentially captured global lateralization of atrophy, is shown. For comparisons betweenpairs of patient
groups, the second LPC, which typically captured between-group regional differences in lateralization of atrophy, is shown. Boxplots show the distribution of coefficients for each
component shown in the two groups (thick line: median; star: mean; circles: outliers).
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There was only one case (the first component for LPA vs NC)where
the two groups could be perfectly separated based on a single
component. This underscores the need for classification algorithms
such as SVMs that operate in high-dimensional space and can
combine information from multiple components.

An example of how an SVM can do a reasonable job of separating
patientswith PNFA and SDwith only thefirst twoPCs is shown in Fig. 4.
The first component captured global GM volumes, with a focus in the
anterior temporal lobes and the insula. Patients with SD had lower
coefficients on this component, reflecting more atrophy. The second
component had a positive focus in the anterior temporal lobes and a
negative focus in the frontal lobe, especially in the left hemisphere.
Patients with SD also had lower coefficients on this component,
reflecting the fact that they have relatively less temporal and more
frontal GM. In this simplified example, all patients were used to
construct themodel, i.e. no attemptwasmade to leave patients out and
estimate generalizability. The decision surface (in this case a line)
separates the patients better than they could be separated by either
component alone, but there were still six misclassified cases.

Each of the six pairings of groups were classified by the procedure
described above, whereby the parameters C, nPCs, nLPCs were all
optimized based on training sets only. The ROC curves for each
classifier are shown in Fig. 5. Accuracies, binomial confidence
intervals, confusion matrices, sensitivity and specificity for a decision
threshold of 50% are shown in Table 2. The mean accuracy across
groups was 92.2%, ranging from 81.3% for PNFA vs LPA, to 100% for the
discrimination of SD from NC and of LPA from NC. All classifiers were
significantly better than chance (binomial test, all psb0.001). Areas
under the ROC curves are also reported in Table 2; this is an alternative
accuracy metric equivalent to the probability that the classifier will
assign a higher probability to a randomly chosen positive instance to a
randomly chosen negative one (Fawcett, 2006).

The optimal number of PCs and LPCs depended onwhich particular
groups were being classified. We plotted the number of times each
Fig. 4. Example of SVM decision surface in feature space. PNFA and SD patients can be
separated reasonably well by the first two components, though 6 of the 64 patients
were misclassified. The decision surface (in two dimensions, a line) is shown in grey,
and the probability of classifying a patient as PNFA is shown by the color scale for
probabilities between 5% and 95%. Probabilities depend on distance from the decision
surface.

Fig. 5. ROC curves for each pair of groups: (a) PNFA vs NC; (b) SD vs NC; (c) LPA vs NC;
(d) PNFA vs SD; (e) PNFA vs LPA; (f) SD vs LPA. These plots reveal tradeoffs between
sensitivity and specificity. The ROC curve is plotted by varying the decision threshold for
probability outputs between 0 and 1. The middle point of 0.5 used to quantify accuracy
in Table 2 is denoted by a circle.
combination of values for nPCs and nLPCs was chosen as optimal for
each subject in one of the 20 iterations, based on training sets alone
(Fig. 6). The color map below the histogram shows the accuracy that
would be obtained if given values for nPCs and nLPCswere used for all
subjects, except for the cell on the right, which shows the accuracy
resulting from the optimization procedure. These are the most
realistic accuracy measures since in practice the optimum number
of features for classifying an unlabelled new case can only be
determined with reference to existing labeled cases. The optimum
number of PCs ranged from 1, in the case of LPA vs NC where the first
PC separated the groups perfectly, to 8, in the case of PNFA vs SD. The
optimum number of LPCs was 1 for three pairs of groups, 2 for two
pairs of groups, and 0 for LPA vs NC. The values of nPCs and nLPCs
which would yield the highest accuracy across all subjects (as
depicted in the images in Fig. 6), were not always obtained during
parameter optimization, however the optimization step usually
succeeded in identifying good values, even if they were not the best.

In the follow-up analysis based on 116 anatomical ROIs instead of
PCA, the mean accuracy across groups was somewhat lower, at 88.8%.
Accuracies were exactly equal for SD vs NC, LPA vs NC and SD vs LPA,



Table 2
Classifier performance.

Actual Predicted Sens (%) Spec (%) Acc (%) Conf int (%) AUC

PNFA NC

PNFA 28 4 87.5 90.6 89.1 79.1–94.6 0.941
NC 3 29

SD NC

SD 38 0 100.0 100.0 100.0 95.2–100.0 1.000
NC 0 38

LPA NC

LPA 16 0 100.0 100.0 100.0 89.3–100.0 1.000
NC 0 16

PNFA SD

PNFA 27 2 84.4 93.8 89.1 79.1–94.6 0.964
SD 5 30

PNFA LPA

PNFA 13 3 81.3 81.3 81.3 64.7–91.1 0.879
LPA 3 13

SD LPA

SD 15 1 93.8 93.8 93.8 79.9–98.3 0.984
LPA 1 15

Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; Conf int: Confidence interval; AUC:
Area under curve.

Fig. 6. Optimal numbers of PCs and LPCs as determined by cross-validation on training
sets. All six pairs of groups are shown: (a) PNFA vs NC; (b) SD vs NC; (c) LPA vs NC; (d)
PNFA vs SD; (e) PNFA vs LPA; (f) SD vs LPA. The number of PCs (between 1 and 10) and
LPCs (between 0 and 2) are shown on the horizontal axis. The histograms show how
frequently each pair of parameter values (number of PCs, number of LPCs) was selected
as optimal for a subject on one of the 20 iterations. The color maps below show the
accuracy obtained with each pair of parameter values, except for the rightmost color
squarewhich shows the accuracy obtained using the optimal number of PCs and LPCs as
determined “on the fly”.
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but poorer for PNFA vs NC (85.9%, p=0.083), PNFA vs SD (87.5%,
p=0.27) and PNFA vs LPA (65.6%, p=0.013).

For discrimination between PNFA and SD, we investigated the
utility of including linguistic variables (naming, single-word com-
prehension, and repetition) as additional features (Fig. 7, Table 3).
Accuracy was 90.4% when imaging features alone were used, and also
when linguistic features alone were used. The inclusion of both types
of features simultaneously boosted accuracy to 96.2%. The difference
between the ROC curves was not significant (p=0.18 versus imaging
alone; p=0.13 versus behavior alone) due to the small number of
subjects (5 subjects were misclassified by the models with one type
of feature, improving to 2 misclassified when both types of feature
were included). The trend towards improved performance suggests
that combining both types of information could result in more
accurate classification than either imaging or linguistic information
alone.

Discussion

We have described an automated procedure for distinguishing PPA
variants from each other and from normal controls, based on
structural MR images alone, or in combination with linguistic
variables. The accuracies obtained were sufficiently high to suggest
that procedures such as this are potentially relevant to clinical
practice. A two-level cross-validation scheme ensured firstly that each
patient was classified using models constructed without reference to
that patient, and secondly that the model parameters—the number of
PCs, the number of “lateralization” PCs, and the SVM constant C—were
also optimized on training data alone. This procedure implies that the
92.2% accuracy obtained should generalize to new cases.

Prediction accuracy was bolstered by including features which
were guided by previous findings regarding the patient groups of
interest, specifically the use of “lateralization” PCs. The use of these
features ensured that SVMs would be particularly sensitive to global
and local left–right asymmetries in GM volume, which is known to be
a feature of PPA (Mummery et al., 2000; Rosen et al., 2002; Nestor et
al., 2003; Gorno-Tempini et al., 2004; Gorno-Tempini et al., 2008). In
five of the six pairs of groups, lateralization PCs were frequently
selected during the optimization stage because they led to increased
accuracy.
Recently several groups have used high-dimensional pattern
classification of MRI to predict group membership of individual
neurodegenerative patients. Patient cohorts studied have included AD
(Teipel et al., 2007; Davatzikos et al., 2008b; Klöppel et al., 2008b;
Lerch et al., 2008; Vemuri et al., 2008), bvFTD (Davatzikos et al.,
2008b; Klöppel et al., 2008b) and MCI (Teipel et al., 2007; Davatzikos
et al., 2008a). Classification algorithms have been used to predict
conversion of MCI to AD (Fan et al., 2008). One study directly
compared the performance of an automated classification algorithm
to the judgments of neuroradiologists of various levels of experience,



Fig. 7. ROC curves for additional models discriminating between the PNFA and SD
groups, with and without the inclusion of linguistic features.

Table 3
Classifier performance with and without linguistic data.

Actual Predicted Sens (%) Spec (%) Acc (%) Conf int (%) AUC

PNFA SD

Imaging only
PNFA 25 1 96.2 84.6 90.4 79.4–95.8 0.975
SD 4 22

Linguistic only
PNFA 24 2 92.3 88.5 90.4 79.4–95.8 0.970
SD 3 23

Imaging and linguistic
PNFA 26 0 92.3 96.2 96.2 87.0–98.9 0.997
SD 2 24

See Table 2 for abbreviations.
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and found that the algorithm performed as well or better than even
the most experienced radiologists (Klöppel et al., 2008a). Accuracy
rates in these studies typically ranged from 80% to 95%, depending on
factors such as how groups were defined, stage of disease, etc. We
used the earliest image available for each patient, in order to most
closely mimic the potential real-world application of an algorithm like
this where we would hope to facilitate correct diagnosis as early as
possible.

Although PNFA and LPA are difficult to distinguish based on
neuroimaging by even the most experienced clinician, SD has such a
characteristic pattern of atrophy that SD patients can be distinguished
from other variants and from controls with high accuracy by even a
moderately experienced neurologist or neuroradiologist. Although
our algorithm separated SD from NC perfectly, accuracy rates were
only 89.1% versus PNFA and 93.8% versus LPA. Several factors are likely
responsible for the erroneous classifications. One is imperfect
segmentation and normalization, which sometimes result in over-
estimates of anterior temporal volumes in SD patients, or under-
estimates in the other two variants. A second factor is that some
patients have more globalized atrophy, so for instance an SD patient
with an exceptional degree of frontal atrophy may be misclassified as
PNFA. A more disease-specific feature extraction process would
weight anterior temporal changes more highly for identification of
SD, but the global nature of the PCA approach we employed is
susceptible to errors of this kind.

Imaging measures are not the only means of differentiating
dementia subtypes. Cognitive and behavioral measures can also be
used for the differential diagnosis of neurodegenerative diseases,
including primary progressive aphasia. Recently, a simple measure
called the Repeat and Point test has been shown to discriminate well
between SD and PNFA based on differential impairments in
comprehension and repetition of single words (Hodges et al., 2008).
While discriminant function analysis was able to perfectly classify
patients in this case, sample sizes were small (15 patients with SD and
6 with PNFA) and cross-validation was not performed to assess
generalizability. Despite these caveats, our clinical experience would
suggest that this test or similar ones would be highly accurate on
populations of these patients. Larger batteries of cognitive, behavioral
and linguistic measures can also discriminate PPA variants from each
other and/or from other neurodegenerative diseases (Kramer et al.,
2003; Knibb et al., 2006; Davies et al., 2008), however the inclusion of
linguistic measures (as opposed to general neuropsychological
measures) is essential to obtain accurate discrimination (Heidler-
Gary et al., 2007).
For the discrimination between PNFA and SD, we found that
inclusion of three linguistic variables—naming, auditory word com-
prehension, and repetition—alongside features derived from imaging,
led to improved performance. These measures were chosen because
they are clinically useful, and because they require little expertise to
quantify (unlike, for example, apraxia of speech, which would be an
even more reliably predictive variable). Although assessing classifica-
tion performance based on linguistic features alone is somewhat
circular, because patients were diagnosed in part on linguistic data
including these, it is noteworthy that performance was better when
imaging data was included alongside linguistic variables than when
based on linguistic variables alone.

There are several limitations to this study. First, most of the
patients' diagnoses have not been confirmed at pathology. Predicting
clinical gold standard diagnosis and predicting pathology are actually
two separate problems, and here we have focused only on the first.
Although the accuracy of our clinical diagnoses cannot be quantified
precisely, in part due to the complex array of pathologies which
underlie different PPA variants (Davies et al., 2005; Josephs et al.,
2008; Mesulam et al., 2008), our diagnoses have nevertheless proved
highly reliable in predicting [11C]-Pittsburgh compound B (PIB)
binding suggestive of Alzheimer's pathology (Rabinovici et al., 2008)
and in predicting subsequent clinical course (Gorno-Tempini et al.,
2004, 2008). Second, although we used two different scanners, we
covaried out scanner type and did not attempt to evaluate how well
models constructed based upon images from one scanner would
perform on images from other scanners. This would be an important
step in developing a clinically applicable procedure (Klöppel et al.,
2008b). Third, the sample size in one of the three groups (LPA) was
quite small (N=16). Possibly as a consequence of this, the model for
discriminating between LPA and PNFA had the least accurate
performance. A larger group of LPA patients should enable better
discrimination of this group. Fourth, we did not systematically
investigate linguistic, cognitive or behavioral variables in the way
that we did for preprocessing methods or selection of appropriate
numbers of components. In principle, other investigations such as
genetic markers and Aβ amyloid imaging could also be readily
represented as additional features, which may contribute to more
accurate performance. Fifth, we considered an idealized situation in
which we discriminated between pairs of groups, where half of the
patients belonged to each group. A practical algorithm would extend
this to the multiclass situationwhere there are numerous possibilities
with different prior probabilities. The SVM framework is already
established to handle this problem (Wu et al., 2004). Sixth, although
we found that feature selection with PCA led to more accurate
classification than features based on parcellation of the whole brain
into anatomical ROIs, it is certainly possible that other ROI-based
approaches, such as disease-specific ROIs, could lead to better
performance, instead of or in conjunction with PCA. Finally, although
we used a rigorous two-level cross-validation scheme to quantify
generalizability, it would be important to test the accuracy of models
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on a completely independent dataset, such as patient cohorts from a
different institution.

Despite these limitations, our results suggest that automated
methods have great potential to assist in the discrimination of PPA
variants from each other and from normal controls. As therapies
emerge targeted to particular neurodegenerative disease mechan-
isms, automated algorithms will provide a crucial tool in facilitating
correct early differential diagnoses.
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