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Abstract
Purpose of Review Aphasia is often characterized in terms of subtype and severity, yet these constructs have limited explanatory
power, because aphasia is inherently multifactorial both in its neural substrates and in its symptomatology. The purpose of this
review is to survey current and emerging multivariate approaches to understanding aphasia.
Recent Findings Techniques such as factor analysis and principal component analysis have been used to define latent underlying
factors that can account for performance on batteries of speech and language tests, and for characteristics of spontaneous speech
production. Multivariate lesion-symptom mapping has been shown to outperform univariate approaches to lesion-symptom
mapping for identifying brain regions where damage is associated with specific speech and language deficits. It is increasingly
clear that structural damage results in functional changes in wider neural networks, which mediate speech and language
outcomes.
Summary Multivariate statistical approaches are essential for understanding the complex relationships between the neural
substrates of aphasia, and resultant profiles of speech and language function.

Keywords Aphasia . Multivariate . Factor analysis . Principal components analysis . Neural substrates . Multivariate
lesion-symptommapping

Introduction

In clinical practice, aphasia is most often characterized in
terms of subtype and severity. Approximately ten subtypes
are commonly recognized—Broca’s aphasia, Wernicke’s
aphasia, conduction aphasia, and so on—which were defined
by nineteenth century pioneers [1, 2] and refined by
aphasiologists of the Boston school [3–5]. The symptomatol-
ogy of each subtype is generally explained in terms damage to
centers and/or connections of a cognitive-neuroanatomical

model. Another salient dimension on which aphasias vary is
severity, and the idea that a single functional capacity explains
many aspects of aphasic behavior also has a rich history [6–9].

While concepts of subtype and severity have great clinical
utility, neither of these constructs are particularly faithful to
the underlying neural substrates of aphasia. Over the last few
decades, cognitive neuroscientists have developed detailed
models of how language processing is organized in the brain
[10–12]. While many specifics continue to be debated, a con-
sensus has emerged that language function is the product of
numerous interacting regions and networks, some of which
are specialized for particular linguistic domains (e.g., phonol-
ogy, semantics, syntax), and others of which support functions
that are relevant to multiple cognitive domains (e.g., attention
networks, cingulo-opercular network) [13–15].

Aphasia is caused by damage to these networks, whether
by ischemic or hemorrhagic stroke, neurodegeneration, surgi-
cal resection, or other etiologies. With the possible partial
exception of neurodegeneration [16], the neurological events
causing the damage do not generally respect the functional
architecture of the networks and regions that are impacted.
Aphasia then involves varying degrees of damage to a varying
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number of language and domain-general networks, and con-
sequently, linguistic domains (e.g., phonology, semantics,
syntax) are often impaired to differing degrees. Moreover,
surviving brain regions are recruited to support compensatory
processes [17], even in neurodegenerative aphasias [18]. This
situation is not well captured simply by characterizing patients
in terms of aphasia subtype or severity.

In short, aphasia is inherently multifactorial both in its neu-
ral substrates and in its symptomatology. Progress in under-
standing aphasia will depend on conceptual and statistical
approaches that incorporate this multidimensionality. The pur-
pose of this brief review is to survey multivariate approaches
to understanding aphasia, with a focus on current and emerg-
ing techniques and perspectives.

Multivariate analysis of speech and language
deficits

The related techniques of common factor analysis (FA) and
principal components analysis (PCA) are among the most
commonly and productively applied multivariate analysis
techniques in studies of speech and language behavior in
aphasia. The earliest applications of factor analysis to aphasic
language [19, 20] produced similar results, if diverging inter-
pretations, with Jones and Wepman emphasizing multidimen-
sionality corresponding to input and output modality [19] and
Schuell and colleagues highlighting the positive correlations
among the factors and the idea of a unidimensional underlying
language deficit [20]. There have been many subsequent ap-
plications of FA and PCA in the development or analysis of
language assessment batteries [5, 21–26], and these have gen-
erally substantiated the presence of both a general severity
factor and multiple other factors that essentially align with
input and output modality. Notably, a very similar pattern
was found in factor analysis of item-level self-reports of com-
municative function by persons with aphasia [27]. Although
most investigators have followed Jones’ and Wepman’s em-
phasis on distinct domains or modalities of language perfor-
mance, it should be noted that neither FA nor PCA methods
alone can resolve the issue, in part because results and con-
clusions will depend on the particular sample of behaviors
chosen for analysis [24]. As noted by Goodglass and Kaplan
[5], correlations among subtests may be due to a common
cognitive basis or the spatial contiguity of lesions to brain
areas that support those functions.

More recent applications of PCA in aphasia [28, 29•,
30–33] have demonstrated the utility of this approach for de-
fining a small number of components (typically two to four in
this literature) as linear combinations of a larger number of test
scores. These components have been given neurolinguistic
interpretations based on the variables contributing to them,
and score estimates derived from them have then used with

voxel-based lesion-symptom mapping (VLSM) or related
techniques to investigate hypotheses about the neural corre-
lates of behavior. Some of these more recent studies have
included new indicator variables motivated by modern psy-
cholinguistic theories of language performance in aphasia
[e.g., 34] and have expanded what is known about the dimen-
sions along which aphasic language performance systemati-
cally varies. Butler and colleagues [28] analyzed data from 31
individuals with aphasia on 17 tasks including picture naming,
word and nonword repetition, semantic and phonological
judgments, word and sentence comprehension, and visuospa-
tial problem solving. They identified three components—pho-
nology, semantics, and cognition—all of which correlated to
varying degrees with a general severity factor. A subsequent
study [33] on the same dataset added four indicator variables
indexing connected language production, resulting in an addi-
tional component related to speech quantity. Mirman and col-
leagues [29•, 30] used a similar approach on a larger dataset of
99 individuals and also identified four components, but the
nature of the components was somewhat different: speech
recognition, speech production, semantic recognition and se-
mantic production errors. In addition to the differences in
samples size, the discrepancies between these two sets of re-
sults may reflect differences in the sets of measures used: for
instance, Butler and colleagues did not include indices of se-
mantic or phonological naming errors, while Mirman and col-
leagues did not include measures of connected speech or vi-
suospatial function. Thus, in addition to the frequently ob-
served distinction between input and output, these analyses
have supported the claim that people with aphasia meaning-
fully vary along at least semi-independent dimensions of se-
mantic and phonological/motor speech ability.

Another line of FA studies has focused on indicator vari-
ables derived from spontaneous speech samples. In their up-
date of an earlier study [35] limited by methodological issues,
Vermeulen and colleagues [36] analyzed 17 quantitative con-
nected speech variables (e.g., speech rate, mean length of ut-
terance, number of semantic paraphasias, seconds of incom-
prehensible speech) and a naming test score collected from
122 individuals with aphasia. They identified five factors:
syntactic ability, phonological paraphasia, neologistic
paraphasia, articulatory impairment, and vocabulary. In a
more recent study, Casilio and colleagues [37] took a different
approach, deriving perceptual ratings of 27 features of con-
nected speech samples from 24 patients with aphasia.
Following a detailed investigation of the inter-rater reliability
of these ratings and consideration of their concurrent validity
with more objective measures derived from the same samples,
FA was used to define four factors: paraphasia, logopenia,
agrammatism, and motor speech. In comparing their results
to Vermeulen and colleagues’, Casilio and colleagues [37]
noted close correspondence between three pairs of factors
across the two analyses: agrammatism with syntactic ability,
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motor speech with articulatory impairment, and logopenia
with vocabulary, while the paraphasia factor was loosely re-
lated to the remaining two factors in Vermeulen and col-
leagues’ analysis. While the convergence of these two studies
is encouraging, it is worth noting that the factors they identi-
fied contrast with those arising from PCA applied to batteries
of tests described above [28, 29•, 30, 33]. Because formal tests
and connected speech analysis provide complementary but
consistent information about patients’ speech and language
function [39, 40], future studies that combine these two types
of data, ideally with large numbers of patients of diverse eti-
ologies, may be able to resolve these discrepancies and iden-
tify stable and consistent factors.

In contrast to the above studies, which have all identified
multidimensional components or factors that are theoretically
motivated or interpretable, another noteworthy line of FA
studies provides a potentially useful counterpoint. Caplan
and colleagues’ investigations of syntactic processing in apha-
sia [38–40] have consistently found support for a unidimen-
sional model of performance on various sentence comprehen-
sion tasks, suggesting that distinctions in sentence structure
motivated by linguistic theory do not account for meaningful
variance. The strength of this conclusion is moderated by the
relatively small sample sizes used and the problems noted
above in interpreting a strong unidimensional factor in the
presence of lesions determined by spatial rather than function-
al architecture.

In reviewing this literature, consideration of two issues
may be useful to investigators seeking to apply these
methods moving forward. One is the distinction between
FA and PCA, which have both different goals and distinct
estimation procedures [41, 42]. PCA is a data reduction
technique that aims to represent all of the variance in the
observed indicator variables in as small a number of
weighted linear combinations (components) as possible.
Because it analyzes all of the variance in the data, PCA,
like regression analysis, carries the assumption that each
of the observed variables is measured without error. By
contrast, FA seeks to explain the covariances among the
observed variables in terms of latent factors that are as-
sumed to be the underlying causes of those variables. For
this reason, FA is the preferred technique when the goal of
the analysis is to describe a theoretical latent structure
underlying a set of observed variables [41, 43].
Furthermore, because FA analyzes only the variance that
is shared among the indicator variables, rather than the
total variance, FA models typically obtain lower loadings
and communalities (proportions of indicator variable var-
iance attributable to factors) than PCA models of the same
data. While these differences may be small when commu-
nalities are high, they increase as the communalities and
the number of indicators per factor decrease [41]. These
FA-PCA differences are important because they can affect

the structure of the model, estimates of the factor or com-
ponent scores, and the replicability of solutions across
samples [41, 42].

Second, most FA studies of aphasia have used exploratory
factor analysis (EFA), as opposed to confirmatory factor anal-
ysis (CFA) models. There are several complicating issues that
arise in using EFA. One issue concerns the need to determine
the number of factors or components to extract from the data.
In every case cited above, investigators used the Kaiser-
Guttman criterion, which requires an eigenvalue > 1, indicat-
ing that all retained components explained more variance than
any single observed variable. This criterion is recognized to
both over- and underestimate the number of factors or com-
ponents, depending on the context, and alternative methods
that employ statistical tests of model-data fit or parallel anal-
ysis, which bases the decision on comparison of the empirical
eigenvalues to those obtained from random data, are currently
preferred [41, 42]. A second issue is that users of EFA must
choose a rotation of the factors or components in the multidi-
mensional space derived from the analysis to interpret.
Rotations are typically chosen to maximize the approximation
to a simple structure, i.e., one in which each variable loads on
only one factor or component. While many rotation methods
exist, one of the most important decisions an analyst must
make is whether to choose a rotation in which the factors are
permitted to correlate with one another or one in which they
are constrained to be independent. The differences in loadings
may be small in some cases [e.g., 30], but these differences
may have larger consequences for factor or component scores
in the presence of substantial inter-factor correlations. In other
cases, orthogonal rotations may be preferred for practical rea-
sons (e.g., maximizing uncorrelated predictive variance [e.g.,
28]). However, exclusive use of orthogonal rotations can ob-
scure important features of the data, such as simple structure
or substantively interpretable correlations between factors and
the potential existence of higher-order factors [41, 42]. The
most frequently used approach in the aphasia studies cited
above (PCA followed by orthogonal varimax rotation) is like-
ly sub-optimal for defining the structure underlying a set of
observed variables [42]. Furthermore, over-reliance on explor-
atory approaches may limit progress because of the compli-
cating issues discussed above.

Given the amount of existing literature on aphasic language
behavior and the substantial agreement across studies, more
frequent application of explicitly confirmatory modeling ap-
proaches could be productive. Advantages of these ap-
proaches include a priori statistical identification of the fac-
tors, thus obviating the need for rotation, and greater emphasis
on absolute and relative tests of model fit. For example,
Swinburn and colleagues [25] used a sequence of nested
CFA models and likelihood ratio tests to demonstrate that a
model based on the subscale structure of the Comprehensive
Aphasia Test fit the data better than either a unidimensional
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model or one based the results of a prior exploratory PCA.
CFAmodels have also been used to identify optimal indicators
of lexical diversity in aphasic discourse [44] and to investigate
substantive hypotheses about sentence processing [38].

We conclude this section by describing a particularly inno-
vative application of confirmatory latent trait modeling.
Walker, Hickok, and Fridriksson [45•] analyzed a large set
of responses to the Philadelphia Naming Test (PNT) using a
hybrid multinomial processing tree/item response theory
(IRT) model designed to predict error types at the item level
as a function of several latent traits motivated by current the-
ories of word production. Briefly, multinomial processing
trees are probabilistic models that explain categorical out-
comes as a series of branching binary decisions [46, 47].
While productive, these models typically do not account for
heterogeneity among persons or items. IRT is a modeling ap-
proach that predicts categorical responses as a logistic func-
tion of continuous latent variables, and has been used for
decades in education [48] and more recently in medicine and
rehabilitation [49] to construct behavioral tests and measure
individual differences between both persons and items. While
IRT models have been used previously to derive estimates of
overall naming ability in aphasia [50, 51], the important inno-
vations of Walker and colleagues’ approach are that it has the
potential to provide psychometrically robust measurement of
latent constructs (for both individuals and groups) motivated
by current theories of word production, and to provide pow-
erful means of testing those theories against empirical data.

Multivariate analysis of the neural substrates
of aphasia

For over 150 years, studies of individuals with aphasia have
been used to infer relationships between damage to specific
brain regions and the emergence of specific speech and lan-
guage deficits [1]. This became increasingly feasible with the
advent of CTandMRI [52], and over the last two decades, the
majority of such studies have used voxel-by-voxel techniques
such as VLSM [53, 54] and voxel-based morphometry
(VBM) [55]. These are mass univariate approaches in which
statistical tests are carried out at each voxel to quantify the
extent to which damage to that voxel is associated with the
speech/language deficit in question. Numerous voxelwise
studies have systematically investigated the neural correlates
of numerous speech/language variables reflecting multiple
language domains [56, 57].

However, the mass univariate approach has two fundamen-
tal limitations. First, by analyzing each voxel in isolation, it
fails to take into account spatial contingencies between the
lesion status of voxels, which arise from the underlying path-
ological processes [58–61, 62•]. For instance, in a stroke co-
hort, if the middle temporal gyrus (MTG) is damaged, then it

is highly likely that the adjacent superior temporal gyrus
(STG) is damaged too, because MTG damage is usually
caused by middle cerebral artery strokes, and to be large
enough to reach the MTG, they would typically impact the
STG along the way. These spatial contingencies are systemat-
ic and pervasive, and have been shown to lead to substantial
displacement of the brain regions that are inferred to be critical
for any given behavior [60, 63]. Most VLSM studies include
lesion size as a covariate, which somewhat ameliorates the
problem by accounting in a gross way for damage to other
brain regions [64], but this is far from a complete fix [62•].
Another partial solution is to carry out post-hoc multiple re-
gression analyses in which several brain regions are included
as independent variables to elucidate whether their contribu-
tions are independent or not [54, 65]. This approach, however,
is limited in scope in that only a handful of regions can feasi-
bly be investigated.

The second fundamental limitation of the mass univariate
approach is that it fails to consider the potential impact of
disconnections caused by lesions [61, 62•]. For example, dam-
age to white matter tracts involved in language processing
could result in similar deficits to damage of the cortical nodes
that communicate via those tracts [66]. Some researchers have
argued that disruption of functional connectivity caused by
damage to white matter is in fact the primary driver of lan-
guage and other deficits after stroke [67, 68•].

Multivariate approaches to analyzing neural data have the
potential to overcome these two limitations of the mass uni-
variate approach, by providing a principled framework for
inferring relationships between brain damage and speech-
language outcomes that allows for contingencies and interac-
tions between multiple brain regions and networks.
Traditional multivariate methods such as multiple regression
are unlikely to lead to much headway, because of the very
large number of brain regions (or voxels) that need to be
considered [69]. Rather, machine learning methods such as
support vector machines (SVM) [70], support vector regres-
sion (SVR) [71], random forests [72], Gaussian process model
regression [73], and Bayesian networks [74] have been pro-
posed to investigate brain-behavior relationships in aphasia.

A complete description and comparison of all of these
methods is beyond the scope of this review, so we will limit
ourselves to describing the basic concepts behind SVM and
SVR, which are the most commonly used machine learning
methods in neuroimaging. In brief, individual patients’ brains
are conceptualized as points in an n-dimensional space, where
n may represent the number of brain regions considered, the
number of voxels, or some set of features that are derived from
brain images. Consider first an application in which we wish
to predict a symptom or syndrome based on imaging, such as,
for example, agrammatism. An optimal separating hyperplane
is identified such that, as far as feasible without overfitting,
patients with agrammatism lie on one side of the hyperplane,
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and those without agrammatism lie on the other side [75]. For
any new case, it is possible to predict whether or not they will
exhibit agrammatism based on which side of the hyperplane
they lie on. Non-linear kernels can be used so that the hyper-
plane need not be linear. Moreover, the hyperplane can be
projected back onto brain regions, voxels, or features, in order
to determine which brain locations are most important for
prediction. Finally, by considering not just which side of the
hyperplane a new case lies on, but their distance from the
hyperplane, we can predict not just binary diagnoses, but
any continuous behavioral variable; this is termed support
vector regression (SVR). Two technical considerations are
noteworthy. First, the success or failure of SVM and SVR
can be strongly influenced by selection and tuning of
hyperparameters, such as C, which controls the tradeoff be-
tween separability and stability in fitting the hyperplane.
Many other machine learning methods also involve
hyperparameters. The choice and/or optimization of
hyperparameters has been received scant attention in the apha-
sia literature to date [70, 71]. Second, it is important to care-
fully design cross-validation schemes such that models are
trained only on training data, and tested on “held out” data
that has not contributed in any way to constructing the model
[72].

In an early multivariate study, SVMs were used to differ-
entiate patients with three different variants of primary pro-
gressive aphasia from neurologically normal controls, as well
as from each other, based on structural imaging [70]. The
average accuracy for pairwise discrimination between groups
was over 92%, suggesting that it is usually possible to correct-
ly diagnose individual patients based on MRI alone. Of note,
the authors computed images of lateralized atrophy by
subtracting estimated gray matter densities between the hemi-
spheres; in this way, they ensured that the SVMs would have
direct access to information about patterns of lateralized atro-
phy known to be diagnostic for PPA. In another study,
Gaussian process model regression was used to predict a
speech production measure in post-stroke aphasia based on
structural imaging, demographic data, and time [73]. Using
atlas-based regions of interest, the authors were able to ac-
count for 59% of the variance in the speech production mea-
sure, which was significantly greater than the variance that
could be accounted for based on left hemisphere lesion vol-
ume alone (47%). Other studies have predicted Western
Aphasia Battery (WAB) aphasia type from structural imaging
[76], WAB subscores from structural imaging [77], good ver-
sus poor recovery from subacute functional imaging [78], and
a range of language scores from multimodal structural and
functional imaging [72].

Other studies have focused on identifying the patterns of
brain damage that are associated with different syndromes,
symptoms, or outcomes; this is sometimes termedmultivariate
lesion-symptom mapping (MLSM) [30, 32, 71, 79–81, 82•,

83]. These studies have identified brain regions associated
with WAB subscores [32, 79], accuracy on the PNT [32,
82•, 83], semantic and phonological errors on the PNT [32,
71], components derived from rotated PCA of batteries of
language measures [30, 32, 80], as well as manymore specific
measures such as pseudoword repetition [81] and apraxia of
speech [32]. Some of these studies have focused on damage to
specific brain regions, while others have also considered dis-
connection of networks [32, 72, 77]. Generally, the brain re-
gions and networks associated with the language functions
studied have been consistent with findings from functional
neuroimaging and other cognitive neuroscience methodolo-
gies. Some highlights include a dissociation between speech
recognition and speech production processes, which were lo-
calized to the superior temporal gyrus and supramarginal gy-
rus respectively [30], and localization of sentence comprehen-
sion to posterior temporal cortex [32].

Several studies have compared MLSM to VLSM
based on data from individuals with aphasia [30, 32,
71, 82•, 83], and/or simulated datasets in which real le-
sion data is linked to simulated behavioral data based on
hypothetical lesion-behavior relationships, and models
are constructed with the goal of recovering the known
relationships [60, 71, 82•]. In synthetic data in which
damage to multiple regions may contribute to behavioral
outcomes, multivariate approaches have been shown to
outperform univariate approaches in identifying all rele-
vant regions [60, 71, 82•]. When there are multiple re-
gions that contribute to a behavioral outcome, univariate
approaches may end up identifying the region that lies
between them, even though that region may play no ac-
tual role in the function [60]. In contrast to studies of
synthetic data which have indicated significant advan-
tages of MLSM, analyses of the same real aphasia
datasets with VLSM and MLSM have revealed surpris-
ingly similar maps. Mirman and colleagues [30] per-
formed MLSM using SVR [71] to identify brain regions
associated with semantic recognition, semantic errors,
speech production and speech recognition, and compared
the regions they had identified for these same compo-
nents in a previous VLSM study [29•]. The Dice coeffi-
cients of similarity for the four maps ranged from 0.92 to
0.98, reflecting a striking degree of similarity. Qualitative
comparisons between VLSM and MLSM maps in other
studies are also remarkably similar [32, 71, 82•, 83]. It is
not yet clear why the clear theoretical advantages of
MLSM do not translate into dramatically different find-
ings for the speech/language variables that are typically
investigated.

Multivariate analyses of the neural substrates of apha-
sia need not be limited to structural imaging data.
Recently, there has been a growing appreciation of the
necessity of considering structural and functional changes
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in tandem. A combined fMRI/VBM study showed that
syntactic deficits are associated with left frontal atrophy
in PPA, but that the left frontal atrophy impacts the func-
tionality of a wider perisylvian network, ultimately affect-
ing syntax [84]. In a similar vein, an analysis using joint
independent component analysis showed that left
temporo-parietal damage in post-stroke aphasia was asso-
ciated with reduced activity in several nodes of the canon-
ical semantic network [85]. Several studies in post-stroke
aphasia have indicated that patterns of right hemisphere
recruitment are dependent on the location and extent of
left hemisphere damage, and that right hemisphere activa-
tion may or may not be positively associated with lan-
guage outcomes depending on the precise nature of left
hemisphere damage [86–88].

Especially noteworthy are a recent series of studies by
Corbetta and colleagues that have employed highly inno-
vative multivariate analyses to investigate relationships
between structural damage, functional connectivity, and
behavior in a large longitudinal series of stroke patients.
These studies are not focused on aphasia specifically, but
language is considered along with other domains com-
monly affected in stroke (motor, memory, attention, vi-
sual). In terms of behavior, these studies have empha-
sized the surprising extent to which deficits are correlat-
ed across domains (e.g. language and memory), as well
as within each domain (e.g. expressive and receptive
function within the language domain) [9, 67, 89].
Corbetta and colleagues argue that the covariance struc-
ture of deficits follows from two facts about stroke: first,
strokes frequently damage white matter, impairing com-
munication between multiple brain regions, and second,
strokes have physiological effects that extend far beyond
the lesion site. They have characterized these effects pri-
marily using measures of functional connectivity derived
from resting state fMRI. Most saliently, they showed that
reduced interhemispher ic connect ivi ty between
homotopic regions is highly predictive of deficits in
higher functions, including language [68•]. Interestingly,
increased intrahemispheric connectivity between left
hemisphere regions was also predictive of better lan-
guage outcomes, while increased intrahemispheric con-
nectivity between right hemisphere regions was associat-
ed with worse language outcomes. Reduced interhemi-
spheric connectivity was associated with decreased seg-
regation of networks that are normally anticorrelated (the
dorsal attention network and the default mode network).
Re-establishment of integration within networks and seg-
regation between networks was associated with recovery
from aphasia and other deficits [90]. This work con-
verges with other MLSM studies that have shown how
aphasia severity is determined by structural measures of
network integrity [91, 92].

Conclusion

We have surveyed multivariate approaches to understanding
aphasia, both from a behavioral perspective and from a neural
perspective. Considering the clear-cut multidimensionality of
aphasia and its neural underpinnings, it is no surprise that
multidimensional approaches have been growing in preva-
lence and prominence over the last few years. Disentangling
multiple behavioral and neural variables requires large
datasets, so it is encouraging that the field of language neuro-
science is becoming increasingly collaborative, with the emer-
gence of a number of large scale projects that will generate
datasets of the size and substance that will form a sound basis
for future progress [32, 93–95].
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